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Abstract 

The symmetry elements detected by the self-rotation 
and the Patterson functions, associated with strong 
correlations between the positions of the molecules in 
the asymmetric unit, are used to reduce the effective 
number of independent bodies to be located by the 
molecular replacement method. A distinction is made 
between 'frustrated' crystallographic symmetries, i.e. 
those that are almost crystallographic ones, and 
"standard' non-crystallographic symmetries, which are 
taken into account by specific techniques. These have 
been successfully applied to many-body macromolecular 
crystal structures, with important savings in time and 
computational effort. 

1. Introduction 

Crystal structures containing many independent mole- 
cules in the asymmetric unit are, in general, difficult 
problems to solve by molecular replaccment (MR). The 
reasons for the difficulties cannot be ascribed solely to 
the inherent limitation of the usual formulation of MR, 
i.e. rotation searches performed independently of the 
translation ones. Indeed, very often the best values of 
rather robust criteria correspond to incorrect one-body 
positions. Therefore, it is the overall strategy of the 
method, based on locating one body after the other, that 
fails if the first bodies are not correctly placed. 

Automation and many-body searches have substan- 
tially improved the performance of the method. Auto- 
mation allows one not only to test many potential 
orientations but also to write scripts for the many-body 
translation problem where the contribution of the fixed 
molecules is alternately chosen from a list of best 
available positions. This combinatorial approach has 
proved to be efficient in a number of cases, but may lead 
to extremely lengthy calculations. 

In this paper we discuss how the effective number of 
indcpendcnt molecules may be reduced by exploiting 
the information provided by non-crystallographic 
symmetries. These arc detected by the self-rotation and 
the Patterson functions, whose prominent peaks indicate 
rotational and translational symmetries, respectively. We 
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will make a distinction between 'frustrated" crystal- 
lographic symmetries (FCS) and 'standard' non-crys- 
tallographic symmetries (NCS). As suggested by the 
name, FCS are almost crystallographic symmetries. 
Their signals are typically stronger than those of NCS, 
but this is not a general rule. FCS and NCS are taken 
into account by specific methods, as described in the 
following sections. 

2. Taking FCS into account 

The information provided by an FCS is customarily used 
to perform a ceil transformation which renders the 
approximate symmetry a crystallographic one. 

A rotational FCS may be detected by inspection of 
the diffraction pattern or, more easily, by means of the 
self-rotation function. Thc computation of the Rsy m 
factor, assuming the frustrated space group, is needed to 
assess the quality of the new incorporated symmetry. 
Indeed, peaks with high values of correlation in the self 
rotation do not necessarily indicate a frustrated 
symmetry: peculiar packings may give rise to extremely 
high correlations. A remarkable example is provided by 
a hexameric DNA structure (Urpi, 1996) where the 
molecules are placed in parallel but rather distant layers. 
Each layer displays the same twofold symmetry axis 
which gives a correlation of 90% with data between 15 
and 3.5 A and an integration radius equal to that of the 
molecule. Since the axis does not intercept any grid 
point of the Bravais lattice, frustration can be ruled out. 

A translational FCS shows up as a strong peak in the 
Patterson function, whose fractional coordinates - 
simple fractions - indicate the amount of reduction to bc 
applied to the cell parameters. A cell reduction implies 
disregarding a big fraction of measured intensities and 
re-indexing. The ratio of the sum of eliminated over the 
sum of total intensities, within a given resolution range, 
may bc used to measure the acceptability of the forced 
symmetry. In general, this ratio increases with resolu- 
tion. 

The structure of a catalytic antibody Fab (Golinclli- 
Pimpaneau et al., 1994) constitutes an cxample of 
translational FCS. The crystal has P1 symmetry and 
eight molecules in the unit cell. The Patterson function 
shows two massive peaks at (½,(7,0) and (0,(7,½) whose 
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heights are greater than 90% of the origin peak value. 
The structure was solved by halving a and c, which 
reduces the number of molecules to place by a factor of 
four. 

2.1. Combined rotational and translational FCS 

The crystal of a secreted aspartic protease (Abad- 
Zapatero et aL, 1996) is an example of combined rota- 
tional and translational FCS. The space group is P1 and 
there are eight independent molecules in the unit cell. 
The Patterson function has a prominent peak at (>90). 
Its height is 60% of theoorigin peak value when using 
data between 20 and 8 A, but drops to 30% with data 
between 20 and 4 ,~. The self rotation shows a massive 
peak corresponding to a twofold axis parallel to b-a .  
With a radius of integration of 35 ,~ - eoqual to the 
model's radius - and data in the 15--4.5 A resolution 
range, the correlation coefficient is 80%. This twofold 
axis, together with the 'centering' 1 (~,>0), corresponds in 
fact to a frustrated C2 symmetry, which is displayed in 
the new cell given by the transformation 

a' = ( a + b ) / 2  

b' = ( b -  a)/2 
t 

C : C  

b' turns out to be almost perpendicular to a' and c', as 
required by C2. The new cell has half the original 
volume. Taking into account the twofold axis, the above 
transformation reduces the number of independent 
molecules by a factor of four. Two molecules have thus 
to be positioned by standard MR methods, from which 
the whole P1 cell can be filled. 

3. Taking NCS into account 

NCS is usually concerned with rotational symmetries. It 
is used in locked rotation and translation functions 
(Rossmann et al., 1972: Tong & Rossmann, 1990; Tong, 
1996): the former to enhance the signal-to-noise ratio of 
doubtful peaks of the cross rotation; the latter to posi- 
tion a monomer relative to the center of the NCS 
assembly. 

The values of the locked cross-rotation function are 
the average of the cross-rotation values at orientations 
related by the NCS (Tong & Rossmann, 1990). For low- 
order rotational NCS, as is generally the case for 
proteins, the averaging may fail to promote the correct 
peaks to the first ranks. As an example of unsuccessful 
use we mention the case of Erabutoxin-b (Saludjian et 
al., 1992). One orientation of the dimer appeared at the 
top of the cross rotation and the second one, linked by 
an NCS twofold axis, was ranked 36th. Spurious peaks, 
though linked by the NCS, gave values of the locked 
cross rotation higher than those corresponding to the 
true orientations of the dimer. 

3.1. Computing the locked cross-rotation function 

The locked cross-rotation function is usually calcu- 
lated by interpolation. By redefining the target function 
it may be computed as an ordinary cross rotation, 
leading to more precise results. 

Let 4~ denote the three parameters representing a 
rotation, R (~ )  its associated matrix, and ~-1 the 
parameters of the corresponding inverse rotation. For 
any function 79 we define the rotated function [7~(~)79] 
a s  

[~(¢,)79](r)-- 79[R(~-~)r]. (1) 

Then, given the Patterson functions 79(o and 79(s), 
corresponding to the target and search crystals, the 
cross-rotation function is defined as the overlap of 79(o 
and [~(~)79(")] (Rossmann & Blow, 1962), 1£ 

v 79m(r)[7"¢(qt,)79(s)](r)d~r = (79m[]7~(qt079(s)). (2) 

v is the volume of the region ~ of integration, generally 
chosen as a spherical shell. Now, if {¢'i; i = 1...g} denotes 
the set of NCS rotations, including the null one, and 
using the unitary property of rotation operators, the 
locked cross-rotation function is given by 

[ f <r '"lfze( ®,)ra *),,'"> 
i=1 (3) 

g 

-- {{[ Z ~ (  * i-' )79('>]/g } [l~( * ) 7~)) 
i = 1  

which is of the same form as (2), with the target 
Patterson function substituted by the average over the 
NCS of the rotated target functions. 

The computation of the locked cross rotation is 
particularly simple in the case of the fast rotation 
function (Crowther, 1972). Indeed, the cross-rotation 
function takes the factorized form 

,2C. / 

Z Y~, CI,,,,"~,,,,,,'(dP), (4) 
/ = 0  m,m'=--I 

which is an expansion in terms of the matrices 7~,,,,,,, of 
the irreducible representations of the rotation group. 
The coefficients of the expansion depend on the inten- 
sities of both crystals and on the size of ~2; they are given 
by the expression 

t)¢ 

C'.,,,,, = 127r ~ et,,,,. , ~(') e(t;),*,, (5) 
n = l  

in terms of target and search contributions (Navaza, 
1993). 

e, .... = [2(1 + 2n) - 1]I/2F_..IFnlay~,,,(f-I)J~+2"-'(2zrHR) 
n 2rrHR 

(6) 

Here, R denotes the radius of g2, Ytm the spherical 
harmonic, 1'/ the spherical Bessel function, and 
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--  H / H ,  the angular  part of vector H. The substitu- 
tion 

t .... --+ ezra, . (7) 
r n '  = - l  i = 1 

gives the locked cross rotation. 
The t ransformat ion (7) is a minor modification of the 

fast rotat ion function, where most of the computing time 
is spent in the calculation of the coefficients et .... . It is 
applied, optionally, in the R O T I N G  program of the 
A M o R e  package (Navaza, 1994). 

If the rotat ional  NCS forms a group, we can replace 
the sum over {(I)7 l} by a sum over {~i} because of the 
re-arrangement  theorem of group theory. Only in this 
case peaks of the cross-rotation function related by the 
NCS will appear  in the locked cross rotat ion with equal 
heights. 

3.2. T r a n s l a t i o n a l  N C S  

Translational NCS has already been described in the 
li terature (e.g. Yuhasz et al., 1989). Here we will consider 
the particular translat ional  NCS which arises when 
independent  molecules have the same orientat ion.  The 
crystal of an Fab structure (Abergel  & Padlan, 1994) is 
an example of this kind of NCS. It has P2~ symmetry and 
four independent  molecules in the unit cell (a = 115.58, b 
= 116.424, c = 70.3 ,~, fl-- 97.84~). Its Pat terson function 
shows a peak at T = (0.206,0,0.482) having 26% of the 
origin peak value, which is rather  insensitive to resolu- 
tion. All other  peaks have values less than 7%. The 
independent  molecules are associated in pairs; each pair 
is formed by almost equally oriented molecules whose 
centers of mass are separated by the translation T. 

This example illustrates several features and traps of 
many-body searches. Al though the correct or ientat ions 
appear  at the top of the cross-rotation function (first and 
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Fig. 1. Loss of the Patterson signal as a function of the mis-orientation 
of pairs of molecules. 

third peaks), the one-body translat ion function and 
subsequent  rigid-body refinement gives a wrong first 
position. An exhaustive six-dimensional search would 
have failed in this case. Starting from this wrong first 
position, up to three Fab's may be placed - the fourth 
one clashes. It is the second best one-body solution that 
leads to a correct result. Also, the particular packing of 
this structure leads to a peculiar result: the first self- 
rotat ion peak is a spurious one (correlat ion of 28% with 
real data and 50% with calculated data). Its use in a 
locked rotat ion would thus lead to incorrect results. 

Based on this last example we tested the efficiency of 
the Pat terson function in detecting translations relating 
two pairs of equally oriented molecules. Initially a data 
set was calculated for a crystal with four Fab molecules 
in the asymmetric unit, two of them with a given 
or ientat ion and their centers of mass separated by the 
vector T, and the other  two in a different or ientat ion but 
related by the same vector. 

We applied random rotat ions ranging from 1 to 20 ° to 
one of the molecules and we calculated a Patterson 
function for each configuration. The same procedure 
was performed for the other  pair of molecules. A third 
calculation was performed applying random rotat ions to 
one molecule of each pair. We see in Fig. 1 that the 
signal decreases much more rapidly when both pairs are 
being changed simultaneously. We also note that a 
strong Patterson signal is already present when only two 
of the molecules are aligned. 

3.3. I n c l u d i n g  t rans la t i ona l  N C S  in to  the t rans la t ion  

f u n c t i o n s  

A simple modification of the input to the standard 
translat ion functions allows one to incorporate  into the 
search procedure the information provided by a trans- 
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Fig. 2. Height of the highest non-crystallographic peak of the self- 
rotation function as a function of the integration radius, with data 
between 15 and 3.5 ,~. 
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lational NCS. The idea is very simple: if the model to 
translate consists of N identical molecules having equal 
orientations, but separated by given vectors 
T,,, n = 1, N, its Fourier coefficients are given in terms 
of those of the individual molecule by 

N 

F H ~ F H ~_, exp(2n'iHT,,). 
n = l  

Although this may be considered as a sort of locked- 
translation function, we are not adding the values taken 
by the functions at positions related by the NCS. This is 
merely a computationally economic way of changing the 
search model to incorporate the translational NCS. 

4. A case with 16 i n d e p e n d e n t  m o l e c u l e s  

Barstar, the natural intracellular inhibitor of the ribo- 
nuclease Barnase from Bacillus amylol iquefaciens  
(Guillet et al., 1993), crystallizes in many different 
crystal forms under almost identical conditions. A 
tetragonal form has been characterized, with unit-cell 
dimensions a = b = 109.89, c = 300.55 ,~, space group 141 
and 16 molecules in the asymmetric unit. 

The self rotation shows a strong peak corresponding 
to a twofold axis perpendicular to c and 35 ° off a, for 
almost any value of the integration radius (see Fig. 2). 
We could expect this behavior from a rotational FCS 
but, in this case, it is incompatible with the lattice. It is in 
fact a standard rotational NCS: as observed in all 
preceding crystallographic studies, Barstar crystallizes in 
dimeric form. 

Using a dimer of Barstar as a search model, the 
structure could be solved straightforwardly by using the 

standard protocol of A M o R e .  There were eight inde- 
pendent molecules to be positioned. The output of the 
one-body translation function left only one possible 
candidate, with correlation coefficient (Cf) of 0.313 and 
R factor (Rf) of 0.613; the next best position had values 
of 0.252 and 0.627, respectively. After rigid-body 
refinement, the whole configuration had Cf = 0.842 and 
Rf = 0.341. The eight independent molecules are almost 
parallel (we observed a dispersion of 5 ° about the 
average orientation) and are separated by about c/8. Fig. 
3 (produced with molpack;  Wang et al., 1991) shows the 
crystal packing, projected along c. 

When using a monomer as a search model, correct 
one-body positions were ranked third and fourth after 
rigid-body refinement, with Cf values of 0.25 and 0.246. 
A lengthy combinatorial approach gave the 16 positions 
corresponding to the correct structure. 

The repeat vector c/8 gives four independent strong 
peaks in the Patterson function. With data from 15 to 
5 A resolution, their positions are (0,0,0.124), 
(0,0,0.247), (0,0,0.371) and (0,0,0.500). By using data at a 
higher resolution (15 to 3.5 A) the last peak splits into 
(0,0,0.492) and its symmetry-related (0,0,0.508). Their 
heights are functions of the resolution, as shown in 
Fig. 4. 

It was assumed that these Patterson peaks corre- 
sponded to a translational FCS, so that the c axis was 
divided by 8. Only one dimer had then to be positioned. 
The discarded reflections - about 7/8 of the total - 
represented 50% of the sum of intensities. In order to 
keep the same a and b axes, the space group was taken 
as C4. One solution was found with Cf = 0.664 and Rf = 
0.447, and a good contrast: the corresponding values for 
the next best position were 0.477 and 0.514, respectively. 
The packing was essentially the same as in 141. 

It is always unpleasant to discard large amounts of 
data, particularly in the present case where they repre- 

Fig. 3. Packing of the barstar crystal structure, projected along c. 
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sent half of the diffracted intensity. However,  transla- 
t ional FCS should be used in the determinat ion proce- 
dure. Note that translational FCS may be handled as a 
s tandard translational NCS. This has the advantage of 
reducing the number  of independent  positions to be 
found without discarding any data. Taking the dimer as 
the search model, there is only one "one-body" transla- 
tion function to compute. The saving in time is impor- 
tant since the Cheshire cell for I4~ is two dimensional.  
With the monomer ,  there is a further ' two-body'  (three- 
dimensional)  translat ion function to compute. 

5. Conclusions 

The examples discussed clearly show that the incor- 
porat ion of FCS or NCS into the molecular  replacement  
technique avoids some of the traps often encountered  in 
many-body searches, and considerably reduces the 
computat ional  effort. 

One of us (EHP) has been supported by a fellowship 
from CNPq, Brazil. 
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